
m^^mmmmm ' l u1"1" "l jiiuMmummmm*' «■npiuiiipniu 11

Stanford Artificial Inteiligencß Laboratory
Memo AIM-269

Computer Science Department
Report No. STAN-CS-75-522

October

PH

O
<

Automatic Program Verification IV:
PROOF OF TERMINATION WITHIN A WEAK LOGIC

OF PROGRAMS

by

David C. Luckham and Norihisa Suzuki

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford university

\

^

4,
7

Qhyo c
U m n m

(i
:■
Eisisrui^LuJ

A

T^g!?!1!!^- STATEMENT A
Approved fct public release;.

Distiibuüon Unlimited

..■.-.i,...^,...J-J —^^...^^^ ^^„■. ^. ^.^.^.^M^^i

iiPMW WBWJWBWW i^.-mmmmmimmmmmmnmm W^w

i

October 1975 Stanford Artificial Intelligence Laboratory
Memo AIM-269

Computer Science Department
Report No. STAN-CS-75-522

Automatic Program Verification IV:
PROOF OF TERMINATION WITHIN A WEAK LOGIC

OP PROGRAMS

by

David C. Luokham and Norlhisa Suzuki

ABSTRACT

A weak logic of programs is a formal system in which statements that mean "the program halts*
cannot be expressed. In order to prove termination, we would usually have to use a stronger
logical system In this paper we show how we can prove termination of both iterative and
recursive programs within a weak logic by adding pieces of code and placing restrictions on
loop invariants and entry conditions. Thus, most of the existing verifiers which are based on a
v/tak logic of programs can be used to prove termination of programs without any modification.
We give examples of proofs of termination and of accurate bounds on computation time
that were obtained using the Stanford Pascal program verifier.

This research was supported by the Advanced Research Projects Agency oj the Department of
Defense under Contract DAHC 1^7^0-0435 . The views and conclusions contained in this
document are those of the iuthor(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University. ARPA. or the U. S.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,

Virginia 22151. i

mikäimäMMmtiäim *i*^M^^..^^^Mlj**il^ i^^sjui^^^Am

mmm m^^^~****m^^^^m^^^*^^\n «iiiiiRwiPH.imnwiiiiiiuiii.'i U.IMII uiiuui mi. i ..in», .<mmmiwmmm'.mm»..

Proof of Termination within a Weak Logic of Programs

by

David Luckham and Nori Suzuki

1. INTROPUCTION.

,

t-1 Stdica [-, :

A weak logic of programs is one in which statements that "a program halts"

cannot be expressed. Such a logic has been given by [Hoare C9,71] and its proof

theory has been defined and studied in [Igarashi, London & Luckham](referred to as

ILL), [Hoare & Lauer], [Cook]. Other recent papers have been devoted to

strengthening this logic so that questions of termination are expressable; e.g.

Dijkstra's notion of weakest precondition [Dijkstra], and various suggestions for

introducing well-orderings into the assertion language.

Here we give a simple application of the method of Virtual Programming which

pertrr's strong statements of termination (e.g. program A halts and Q is true) to be

deduced from weak statements (if A halts then Q is true) by means of the good old

law of excluded middle. (Remark: the notion of virtual program in intuitive terms is

simply code added to an actual program which has no effect on the actual values of

the result parameters.) The method requires no change whatever in the weak logic,

and employs exactly the same automated techniques that are currently used to verify

all manner of properties of programs [ILL, Suzuki 75a,b, von Kenke & Luckham]. This

permits strong proofs of correctness (i.e. termination and consistency with

- 1 -

rtMuaiüiiitiiiii« ^.^.-^ ■.■..*^«- - -->—^-. .. .,. „,..,. ..

iP«!WiPiiPPWiBHBIP!P<8^^

!
i
1

specifications) to be obtained using the present verification systems based on the

weak logic. Similar ideas have been put forward by Knuth [Knuth], in which he

showed how one can prove the termination of extended Euclid's algorithm as the

byproduct of the correctness proof using Floyd's method.

Virtual program has been used previously to document programs in certain

tricky situations (e.g. where the documentation uses data structures not used by the

actual program, such as history sequences [Clint], or data structures destroyed by

the actual program [v.Henke & Luckham]). More recently it has been used to prove

complexity bounds on program computations [Farmwald]. The technique seems to

present a natural approach to proving dynamic properties of programs (i.e. properties

of the computations themselves as distinct from the final results). Termination is one

of these dynamic properties.

Essentially, most programs halt for simple reasons, and the programmer usually

knows these reasons. What is needed is a natural way of permitting him to state his

reasons. Our proposal here is simply to introduce virtual program counters into the

program. The function of these counters is to "count" the number of computation

steps that are executed. Each path in the program must have added to it an

assignment statement which increments the counter proportionally to the lennh of

the path. The programmer must also add inductive assertions stating in effect that

the values of the counters are bounded. Presumably he has an idea of a reasonable

upper bound, and that is all that is necessary. The problem of proving termination

within ehe usual weak logic then becomes merely another verification problem

—namely the proof of the boundedness of the counters in the augmeuted program.

- 2 -

.. .,,..1,.,.i,:.:.,..^^a,>..,^aaaaf.^.^»^.,. ./-..^^^^.-«-■•^i.*««.^^^

PPIPiPPmiPWPlM I,..-,.«. .,.1 -"

There is one "catch". The counters must account for every possible loop and

recursion (i.e. every potential source of infinitely long computation), otherwise a

correct weak statem.n. will not imply termination. A test for this provision can

easily be automated.

In section 2 we illustrate the method and the "catch" by simple examples. An

outline of a rigorous justification is given in Section 3, and actual results using our

present verifier [ILL, Suzuki75a,b] are included in Section 4.

To simplify matters, we have restricted the discussion to Pascal programs

containing Assignment, Conditional, and While statements, function calls, and

recursive procedure calls. The extension of the method to Colo's and other

statements is obvious. Also, we have assumed that the reader has an acquaintance

with some of the literature on verifiers based on the weak logic of programs (see the

references).

- 3 -

Ik-^taka^^^ny..)^

üüiwpwpiiiii,,... mwBimmmmi&m*

i

i

2. THE METHOD.

Our method involves the use of very simple virtual programs. Virtual program

is defined rather loosely as a set of instructions imbedded into the program to be

verified so that it does not interfere with the original program (often called the

actual program). We shall use only virtual assignment statements, and their left

hand-sides will be required to be ghost variables--variables which are not used in the

original program. No other kind of modifications will be allowed. It is clear that the

addition of such instructions cannot change the behaviour of the actual program on

the actual program variables.

As an example let us look at the following program for multiplication by

addition.

Program 1.

ENTRY: a.MNTEGER;
x«-a;
yf-0;
while x^O do

begin
x«-x-l;
y*-y+b
end.

EXIT: y»a*b;

If we want to measure the time taken to compute multiplication with the assumption

that the assignment statement and testing both take a unit compulation time, we can

modify the program by introduction of virtual program as follows,

4 -

'"tm^1-'——^ •-- iiiiiiiiiiiiiiiiiiMilliihiiaihtiiiilitiiiiifrirfiii -.^-^--- „...^■^.„■^-u...-,.. ^ ^,^L~,.^—.^.^^,..,.^^.... ..^

p^pipppawkujii-iii»..!1»»«'1''.''«.':
 in.»■■■■x

\{\

Program 2.

ENTRY: a,b:lNTECER;

y*.0;
counler«-2;
while xi'O do

begin
x«-x-l;
y«-y+b;
counter«-counter+3
end.

EXIT: y»a*b A counter"3*a*b+2;

Suppose we can prove within the weak logic of programs that program 2 augmented

by the new assignment instructions satisfies the new EXIT condition. The value of

the counter in the EXIT is a function of the input parameters only. So, we will have

proved that whenever the augmented program stops the counter is bounded by a

bound that is given before the computation starts. Now assume that we have put the

virtual assignments "in all the right places" so that every possible computation path

contains an assignment which increments the counter by the number of instructions

on the path. Then we will have proved that either the actual program 1 will stop

within a number of steps less than the bound, or it will compute forever. This would

give us a tool for proving bounds on the complexity of computations of programs

using standard verificaJion techniques.

There is one problem: the user Is responsible for putting virtual assignments of

the form f;ounter«-f(counter) that increment the counter correctly in a sufficient

number of places. Having done this, verifying the computation bounds becomes a

problem of verifying a statement about the augmented program in the weak logic, and

- B -

MSMMXtO^ km ^^. ^.-^ ■ ,..>-^—. , .»v^. ,. ^^..t^.r ^.„^-u;..- ... - — ^-..-.^ ■ .■.■^._^.....—..^.d

VW:. w.B.-rrwrvr- ,*iWMWW»l>l«

the verifier can be used to aid in solving it. Note thai we do not have to extend the

weak logic in any way.

We might ask whether we cannot prove termination at the same time. This

simple thought presents another problem. See the following example,

Program 3.

ENTRY TRUE;
x«-0;
counter«-!;
while xiO do

begin
x*-x+l;
counter*-counter+2
end.

EXIT counter«!;

This program certainly does not terminate. But it is easily proved to be weakly

consistent with the output assertion, COUNTERS. And the counter is clearly

coununi; all possible computation steps. The weak correctness proof goes as follows.

We take the inductive assertion Xi0 as invariant of the loop. Then, three verification

conditions are generated corresponding to three paths in the program.

(1). TRUE-*0i0.

(2). X^OAX^O ■♦ X+1>0.

(3). Xi0A-Xi0 -» COUNTERS.

They are all valid. Condition (1) requires that when the control reaches the

while-statement, the invariant will be satisfied intially. And (2) guarantees that X>0 is

the invariant of the loop. Condition (2) is valid since the antecedent, namely

Xi0AnXi0, is a contradiction; that is, the path to the EXIT is never executed.

ifeM^,^^.Mi,iiMl^^A.^.^^tli^^

■^^MpamM.ii.iiiiuni i", i ii J«|i •pnwimni■■ WJIWJIImjiuuiau Lmii»npwwf,iiiiiiiuiii|ywm i uimimHUKHmmKv**,. ""»^l

.

1 he question of proving termination is really asking under what conditions a

weak statement about a program with a virtual counter ("if P stops then counterCb")

implies a strong statement ("P must stop in cb steps"). As is evident from the above

example such implications are not always valid. In order for a weak statement to

imply a corresponding strong statement all iterative statements must have an

invariant assertion stating that the counter is bounded. We shall call these "bound

assertions".

In our example, the inductivo assertion about the while loop does not even

contain the counter. If we try to force tb« proof above to be a proof of termination,

we have to give a stronger loop assertion so that if the program does not terminate

and the control repeats the loop indefinitely, this assertion eventually becomes false.

Then, the verification condition corresponding to the loop is no longer valid.

The question is, "can we always find such strengthening of the loop invaliant?"

And the answer is ,"yes." The expression which we have to add is COUNTERCg(X),

where X is a set of input values of program parameters. This assertion gives the

upper bound for the value of COUNTER.

The method for While Statements:

Each while statement is associated with a variable, COUNTER, which does not

appear in the actual program. A COUNTER may be associated with many while

statements. For each while statement, the user must add to the while body a counter

ignment, COUNTER<-f(COUNTER,X0), where f is a strictly increasing integer ass

valued function and X0 is a set of variables not occurring in the actual program. The

- 7 -

b^|^jk|*is^jijjjig|^

mmummii u ->i •I»IJ"I"L'|III"W«WHW«W^PIRäB^PPWWWWPW,IW«UU«.WIPII*.«».I»IUI" i.iii «i. in i^|iiiyjiii..iiw initiLj i.

us«r must also add an inductive assertion, COUNTERCglXO), where g is a well defined

hinction of XO, to the While statement.

The same kind of technique can be used to prove termination of procedures

with recursive calls. Here, the potential source of infinite computation is the

execution of arbitrarily many calls. The role of the counter will be to "count" the

number of recursive calls by being incremented by COUNTER *- f(COUNTER,X0), f a

strictly increasing integer valued function, each time a call occurs. So we have to

place the counter assignments where they will be executed whenever procedures are

evoked. One place which meets that requirement is the beginning of the procedure

body. Also we need to add bound assertions that will become false if the depth of

procedure calls exceed a certain level. The best candidate is the ENTRY condition of

the procedure. The counter is introduced as an additional VARIABLE parameter of

the procedure since it must be global to every call.

We note that the bound assertion, say COUNTER <■ giXO) , must be fixed for

all calls; therefore XO must not contain any parameters appearing in procedure calls

otherwise the bound would change with the actual values of those parameters. We

can vhink of XO as being initial values of parameters of the outermost procedure call.

Below we give an example.

Program 4

procedure factorial(var X;N);
ENTRY N>8;
EXIT X-NI?

i f N-0 then X «- 1 else
beg i n

factorial(X,N-1);

.^.^U^^-,,..,.^.

• WIIUI.W"»

X ♦• N*X
end.

This is a procedure which calculates factorial N and returns the result in X. The

entry and the exit conditions are N i 0 and X ■ N! respectively. We change the

program with COUNTER assignments.

Program 5

procedure factorial (var X.COUNTEF; N);
ENTRY N>3 A C0UNTER<N8 A C0UNTtH+N-N3;
EXIT X-NI)

beg i n
COUNTER - COUNTER + 1;
1 f N-6 then X ♦- 1 else
beg 1 n

factorial(X,COUNTER,N-l)j
X - N*X

end.

Notice the new entry condition contains not only a bound assertion, COUNTER^NO,

but also an inductive assertion stating an invariant relationship between COUNTER

and values of the parameter N in successive calls. Notice also that NO has been

introduced so that the bound contains no parameter of the procedure; N0 is the

initial value of N at the outermost procedure call. So what we are going to prove is

N>0 A C0UNTER+N=N8 A COUNTERsNa
(COUNTER ♦• COUNTER + 1;

i f N-0 then X ♦- 1 else
beg i n

' factorial (X,COUNTER,N-Ds
X *■ N*X

end. 1
X - N!

with the assumption that

Y>8 A C0UNTER+Y-N8 A C0UNTERSN8 1 factorial _(X,COUNTER, Y) 1 X-Yl

Using techniques for proving weak correctness of procedure call [HoareTl, ILL,

SuzukilSb], verification conditions are

^Mafa^Maia^

IJIJ|B«.W1J"WI«PWWP""W*'WWH^^

(I) Ni0ACOUNTER+N-N0ACOUNTER<:N0 =(N=0 => 1-0!).

(II) Nä0A(COUNTER*N-N0ACOUNTERcN0 ^(N^ = N-1>0ACOUNTER+1+N-1-N0A

COUNTER<:N0A(X00-(N-1)! = N*X00!-N!))

which are all valid. So the actual program 4 is correct and also terminates.

; it

The Method for Recursive Procedures

Each procedure declaration is associated with a variable, COUNTER, not

appearing in the actual program. Then (1) COUNTER is introduced as a new

VARIABLE parameter of the procedure, and all calls are correspondingly modified;

{2)the user must place at the beginning of the procedure body, a counter assignment,

COUNTER - f(COUNTER,X0), where f is strictly increasing and XO is a set of

variables not appearing in any procedure body; (3) the user must add a bound

assertion, COUNTER C g{X0), to the ENTRY condition of the procedure.

- ie -

1

 ■—— ^ ,—>,..■ v„...»....,A.^..^./^^/.,. ^^.t „A..^.^-■ .■■.■^, ■.;-^..^^^...,..-.,.-^^...J...^1..^^ .. ,. ^

w*m**—* lui.i J11..11J1.JB111111 u i ■»■■■-« m,i„m<fmmv n mm nwnu P(ii«p«mp4,ii.M.iigi>i*j|iu™uijm'. j,i,u|,uni,,j|itii^jiiwuj(ji.^»juiii,ii.:. i,„

3. JUSTIFICATION OF THE METHOD.

We are going to show that this method of adding virtual program counters to

while statements and procedures with recursive calls is sufficient to prove

termination. That is, a proof of weak correctness of the augmented program

guarantees the termination of the actual program. We have omitted the case for goto

statements but we can treat them likewise,

(i) While statements.

The augmented program for while statements

UHILE C DO S

is

UHILE C DO
{ COUNTER <■ f (COUNTER, W) ; S).

where f(COUNTER,X0) is an integer valued strictly increasing function, that is

COUNTER < f(COUNTEMO),

and XO is a set of ne v variables not occurring in S. The form of the invariant of the

loop (or the inductive assertion) must be

I A COUNTER <■ giXO) where I is any Boolean assertion.

Now we are going to prove that if the augmented program of this form with

the given inductive assertion is verified then the actual program terminates. Various

proofs of the soundness (i.e. semantic consistency) of the weak logic of programs

have been given (see [Hoare & Lauer], [Igarashi, London & Luckham], [Cook]). These

proofs construct a model (essentially an abstract interpreter for the programming

language) with the property that any statement about a program that is provable in

- 11 -

•i ■■AÖBÄjia*>ii ifil-lNliMilMltMtlilti'fiMhii' iMMäiiBiifragiaiiri^

fmm IPPJ^WWWMWWWWII'W.IWIJPW «»W^l»^

this logic is true when the program is "run" on the interpreter. This means for

example, that if we can prove

1 { while L do A } I in the logic of programs,

I being a Boolean assertion invariant of the loop, then when "while L do A" is run on

the abstract machine, the computation state at the end of every execution of the

loop will satisfy I.

We shall show that the provability of weak statements about programs

augmented by counters according to our method implies that the computations of

those programs on the abstract machine halt. We present our argument with some

degree of informality since we do not wish to burden the reader with the f'-...->al

details of the model here. We shall simply refer to a "standard machine" which the

reader can imagine is an interpreter for the axiomatic semantics of Pascal.

Proof

Suppose the augmented program for a simple while statement as shown with the

given inductive assertion is proved. Suppose also that the program does not terminate

when run on the standard machine. We are going to show that this assumption

produces a contradiction. We are going to number the values of COUNTER so that

COUNTER is the value of COUNTER when the control goes around the loop 1 times.

Since the program does not terminate, we are going to have an infinite sequence of

values,

COUNTER ,... .COUNTER
0 n

- 12 -

tmwwiiitttii»''^"ia"°"--1''''--' ^.^^.^..^^.M^W..^,^^

. iiinriiiirnriif r—" -JT--—.. ■ ■ !■■ .i. ■, __, ^m't

Because of the assignment statement

COUNTER - f(COUNTER,X0))

which takes place between two successive values of COUNTER'S, we have the

relation

COUNTER -f(COUNTER,X0).
i.i i

However, f is strictly increasing and i'-o it is an integer function; therefore,

COUNTER i COUNTER + 1.

From the above relation

COUNTER i COUNTER + n
n 0

So for any integer k we can select m such that COUNTER > k. This contradicts the
rr.

fact that the loop invariant is of the form

1 A COUNTER <■ giXO), which is true for every iteration and

g{X0) must remain constant throughout the computation.

So the program must terminate,

(ii) Recursive procedures.

The augmented program for procedure

orocedure k(X); B

is

procedure klXivar COUNTER);
begin

COUNTER - f(COUNTER, XO);
B

end.

'he function f must be strictly increasing as was the case in (i). The bound assertion

- 13 -

iM^-wA^^^aA^^^«.^,....;.-■,■... >.....-, .«.^.„„^..^.^^^.^^^.^«^.^il.,

■ •■.•iwii j.-^-.w n , • um ..i LJ MI ■Jwi>mMnnn*an«^nw«Jlivl.«U'.invMi|ia.a'i«4i.i J" iii'.ii'1'.iwi-MPfii.i UH I..I..I.PI»- I—.».I „w^-jm ■ 'T-^-TIB)

is now added 10 the entry condition of the procedure , which must take the same

form as in the case of while statements.

Proof

Assume first that B contains no while loops nor calls to procedures other than

k. Suppose the augmented program with input assertions of the form

1 A COUNTER c g{X0)

can be verified. That is

1 A COUNTER < g(X0) I begin COUNTER «• f (COUNTER, XO); B end } O

is provable with the assumption that

i A COUNTER < g(X(?) { k(X) } O .

Suppose also the yiogTim does not terminate. Then the depth of recursive calls to

this procedure is infinitely large. In this case, we are going to number the values of

COUNTER at the beginning of the procedure so that COUNTER is the value of

COUNTER at the i-th level of procedure call in the current calling sequence. So we

have a sequence of values

COUNTER ,... .COUNTER ,...
0 n

Because of the assignment statement

COUNTER *■ f(COUNTER,M)

at the beginning of the procedure body so that it is always execute after a call, we

have the following relation

COUNTER -flCOUNTER.XO),
i«l i

for all i. As in the previous case, for any integer k, we can choose m such that

- 14 -

.. -d...^.. -^ .-^u^. iMMM

PMPmM^WVWmirw''■ '■" «• " LiMi.ipiii.ii ii . ii,>.«...i... ..im1.,v-.^l>^>.-<.-«uipi)-ii^)*«a«a«|i>il. .iu. l»">i-P-<"-H' '. -■""»

COUNTER > k.
m

This is a contradiction because at each procedure call

i A COUNTER <• gUO)

must hold just at the entry to the body. Note that gW must remain constant over

all calls because XO does not contain any program variables.

The above arguments for a single loop and a single recursive procedure can be

generalized for nested loops and mutual recursive procedures. Essentially, if there is

an infinite computation of an augmented program with n counters, one of those

counters will be incremented infinitely many times.

15 -

^^«^^^■■^■•■^a^^ ia.ataM . ^ ..■..., .„„-^ .■^■^aaa^^-»^-.^^^-^^^

PJtllBIIII.il -•" tmtvvm M^iWWHPi^wppjipkiMipipPWiWP»*^^

4. EXAMPLES.

All proofs below were obfuned using the Stanford Pascal Verifier. This system is

implemented in LISP and runs on a PDP-10 in about 50K words of memory. TKe main

references for details of this verifier are [igarashi, London & Luckham, Suzuki a.b].

The first example is Dijkstra's square root program which computes square root of N.

The problem here is to verify both that the program halts and computes an integer

approximation to the square root of N. The program has been augmented by

operations on the virtual variable COUNTER. Termination of the square root

program is verified by proving the bound assertion on COUNTER for the augmented

program. The documentation is expressed in terms of user-defined concepts such as

"B2 is a power of four" and "the integer logarithm base 4 of B2". Notice that the

EXIT condition implies that the loop is executed at most 1LOG4(B20) times, where

B20 is the intial value of parameter B2.

PASCAL
ENTRY (N>0) A (B2>N) A P0UER_0F_F0UR(B2)A(B2-B2a);
EXIT (3 <; A) A (A*A s N) A (N < (A+1)*(A+1))

A(COUNTER i IL0G4(B28));

BEGIN
A2 :- 3;
AB !=■ 0!
COUNTER:=8;
INVARIANT PGUER_0F_F0UR(B2)A(AB*AB - A2*B2)A(AB^0)A{B2>0)

A(A2+2*AB+B2>N)A(A2<N)

A(IL0G4(62)+C0UNTER-IL0G4(820))
A(COUNTER S ILOG4(B20))

UHILE 1 * B2 DO
BEGIN
AB :- AB DIV 2;
82 :- B2 DIV 4;

IG -

■^^*^.^il^*^ ■fc^ti^iteMaiaia »■■ia: ..■■a-.l^iasu^.^ia.-^ .-^^'.^.»^...^.viiriti-^ :....- .^^^.^^i^^^^*^^

iPfliPWiPP!!:»«»»^ mznmr

T :- A2 + 2*AB + B2;
COUNTER:-CÜUNTER+1;
IF T s N THEN

BEGiN
A2 :- T;
AB :- AB + B2
END

END;
A !- AB;
END. »

FOR THE HAIN PROGRAM
THERE ARE 3 VERIFICATION CONDITIONS

ti 1
(8<N &
N<B2 S.
PÜUER_0F_F0UR(B2) &
82=823

P0UER_0F_F0UR(B2) &
0*8=8*82 &
0<8 &
8<82 &
N<0+2*0+B2 &
8<N &
8<IL0G4(828) &
IL0G4(B2)+8=IL0G4(B28) &
(—1-8200 &
POUER_OF_FOUR(B208) &
AB8e*AB88=A288*8280 &
8<A808 &
8<B288 &
N<A200+2*AB00+B200 &
A280<N &
COUNTER88<ILOG4(B20) &
ILOG4(8208)+COUNTER00-IL0G4(820)

-»

8<AB00 &
AB08*AB00<N &
N<(AB00+1)«(AB00+1) &
COUNTER00<ILOG4(B20)))

2
(-A2+2*(AB DIV 2)+B2 DIV 4sN &
-1=B2 &
P0UER_0F_F0UR{B2) &

- 17

. rn^Tiiri^iifflif'^-iiTit-iMB^.mMirtimaitiVraiiv.i-i w- «.^-.-i^ MlMiHMitti^ ^.^^■.iai^^J^^yitM|^i.'||tMT,ii|-r,|,..^^

mmmmmmmmmmmm- MAIIX mmm..Mrmmmm*mim i^mvjmmM.mvmMmmmmvm-- m\mmKmwmiiM
•miw

■I

\

AB*AB=A2*B2 &
0<AB &
0<B2 &
N<A2+2*AB+B2 &
A2<N &
COUNTER<ILOGA(B20) &
IL0G4(B2)+C0UNTER-:L0G4(B20)

"VdUER OF FOUR(82 01V 4) &
(AB Dlv 2)*(AB DIV 2).A2*(B2 ÜIV 4) &
0<AB DIV 2 &
0<B2 OIV 4 &
N<A2+2*(AB DIV 2)+B2 OIV 4 &
A2<N &
COUNTER+1<1LOG4(B20) &
IL0G4(B2 DIV 4)+COUNTER+l-ILOG4(B20))

3
(A2+2*(AB DIV 2)+B2 DIV 4<N &
4=B2 &
P0UER_0F_F0UR{B2) &
AB*AB=A2*B2 &
0<AB &
0<B2 &
N<A2+2*AB+B2 &
A2<N &
C0UNTER<IL0G4(B29) &
IL0G4(B2)+C0UNTER-IL0G4(820)

GROWER OF_FOUR(82 DIV 4) S „„„,,,
(AB Dlv 2+82 OIV 4)*(AB DIV 2+B2 DIV 4)-

(A2+2*{A8 DIV 2)+B2 DIV 4)*(B2 DIV 4) &
0<A. OIV 2+82 DIV 4 &

S<A2+2^AB DIV 2)+B2 DIV 4+2#(AB DIV 2+B2 DIV 4J+B2 DIV 4 &
A2+2*(AB DIV 2)+B2 DIV 4sN &
COUNTER+1<ILOG4(B20) &
IL0G4(82 DIV 4)+CDUNTER+l-lL0G4(820))

These verification conditions all simplify to TRUE using the SIMPLIFIER with the

lemmas (AXIOMS and COALS) in the COALFILE below. The total time for the

complete verification is 39 CPU seconds.

The lemmas describe properties of POWER.OF.FOURW, X DIV Y, EVEN(X), and

lLOC4(X), and are supplied by the vsser. They are written in a form which indicates

- 18 -

^a.Ai^.^^M.^a-ai^fei^^iiia^^ ..,i,v-..;^,Ma^ifaia^ii^>Ja^..iJ^a

-^il««kl»WilWlWWJillWJ«*WW|W ^ .,!iP!W* -Mlfl*iMW*«iPlW*lWWI»J«|

1
It

how they are to be used by the SIMPL1FIER [Suzuki a]. To read them as logical

statements simply ignore all occurrences of "®". A lemma of the form "AXIOM A-B"

means "A-B". "GOAL A SUB B" means "B-A".

With this advice readers should be able to understand the lemmas (while those

aquainted with our previous reports will also understand how they are used by the

S1MPLIFIER in the proofs). Only three of these arithmetical lemmas (those marked

by a "*") are needed to prove that the program halts within 1LOG4(B20) executions

of the loop. This reflects the fact that the loop is controlled by a single instruction,

B2:-B2 DIV 4. So termination is a much simpler problem than correctness of the

output in this case, and can be checked almost "for free".

GOALFILE

*
*
*

AXIOM @P1<9P2 » P1+1<P2;
GOAL ePl<eP2 SUB (P1<®P3)A(eP3<P2);
GOAL 8 < «X + ®Y SUB (8 ^ X) A (9 < Y);
GOAL ®P1<«P2 SUB (P1<®P3)A(@P3-P2);

AXIOM IFUfJ) THEN aI>9J « I>Ji

GOAL POUER OF F0UR(®I1 DIV A)SUB P0WER_0F_F0UR(11);
GOAL 1 < («I DIV 4) SUB P0UER_0F_F0UR(I) A(1<I);

AXIOM (®K*@L)DIV öK « L;
AXIOM IF M+1<K THEN ((@K*@L)+@n)DIV eK « L;
GOAL e<®Pl DIV eP2 SUB (P2 > 0)A(P1 > 8);

GOAL EVEN(@Z) SUB (Z*Z=A2*®X)AP0UER_0F_F0UR(X);
AXIOM IF EVEN(X) THEN (@X DIV 2)*{®X DIV 2) » {X*X)DIV 4;
AXIOM IF POUER 0F_F0UR(X) THEN ®Y*(®X DIV 4) « {Y*X)DIV 4;

GOAL (®X DIV @I)={@Y DIV @I) SUB X-Y;
AXIOM IF EVEN(X) THEN 4*(sX DIV 2) « 2*X!
AXIOM IF P0UER_0r-_F0UR(I) THEN 4*(al DIV 4) «

GOAL ®X*aY=aZ»®Y SUB (Y*0):)(X=Z);

GOAL IL0G4(@X)>8 SUB X>1;
AXIOM IL0G4(®X DIV 4) « IL0G4(X)-l!
GOAL lL0G4(®X)a SUB (X>1)AP0UER_0F_F0UR(X) ;

I;

- 13

■■■-'•■ ■ ■•^- : ■■ ■

L^,,-,atoJ.A.^^i.^^.^ai^^tt^a-mfc..waMua^.^ „....■■.^^bHäit***^...^,:^^

!l!i«WNPrawMWiPW»WHHPH»PI«IWP^ mmmj^ mgiMmmimvu

The next example shows how the termination of a recursive procedure can be

proved using a counter and the entry assertion which states a bound on the value of

the counter. The procedure PGCD computes the greatest common d^isor of M and N

and returns the values as R. This is stated as the exit assertion.

PASCAL

PROCEDURE PGCD(VAR COUNTER.R:INTEGER;H.N:INTEGER);
ENTRY {n>8)A(N>8)A(C0UNTER<N8)A(C0UNTER+NsN8);
EXIT R-GCD(n,N)i
BEGIN
COUNTER :» C0UNTER+1;
I :- noom.N)!
IF 1-8 THEN R :- N ELSE PGCD (COUNTER,R.N,I)
END;

Jf* V ^n T^^^

FOR pGCD .,.„„,„
THERE ARE 2 VERIFICATION CONDITIONS

ft 1
(noD{n1N)=0 &
8<n &
8<N &
C0UNTER<N8 &
C0UNTER+N<N8

^N-GCD(n.N))

2
(-.t1OD{(1tN)-0 &
g<n &
8<N &
C0UNTER<N8 &
C0UNTER+N<N3

-»
8<N &
8<noD(n,N) &
C0UNTER+1<N8 &
C0UNTER+l+n0D(n,N)^N8 &
(R88=GCD(N,nOD(n,N))

R88-GCD(n,N)))

- 28

mmmmiämmmM müMääLt ^^iiiitrtllinniiifiiliiMiililiiiltfiilili i ifl« m, iiiaiiriiiiiniiiiiiiirniilviiir.iiiii>-.«n..iii' ——-^— --^ - ■ -- —- -- ^- J

^ßm^iKmiimw^K^^^^^^^^^mmmmmmmfmmmmmmmmmmm^i^ ->-^^
-.t,ipi.J,'j.!«4i-WU»eBv«4'B»('**1---"

'

LH

I

These verification conditions are simplified to TRUE using the following arithmetic

lemmas and lemmas describing properties of CCDU^). The computation took 8 CP'J

seconds.

GOALFILE

AXIOM 8 <, nODten.oN) « TRUE;
AXIOM M0D(9M,9N)+1 < aN « TRUE;
AXIOM IF X-Y*9Q THEN MODlsX.sY) « 8;

GOAL «P3 <, 9P1+9P2 SUB (P3SP1)A(8SP2) ;
AXIOM 9P1<9P2 » P1+1<P2;
GOAL 9X <, 9V 3ÜB (K-1-Y)A{X-1SY)|

GOALFILE
AXIOM IF Y-M0D(9R,X) THEN GCD(9X.9Y) » GCDCR.X);
AXIOM IF MOD{X,Y)-0 THEN GCD(9X,9Y) « Y;

- 21

ir^^^^-.~~-..:^,.**^*M*>^^ ^.^:...^.^...^^>^^>^.^^,^.a,m.J.^,^

-„^^ ..^wfifi&^fK+f 'MB«iHp«i^

The last example is the procedure SIFTUP used in the TREESORT3 algorithm.

The properties that the output array is ordered and the output array is a

permutation of the input array have been proved for the whole TREESORT3

algorithm by this verifier [Suzuki 75a]. We verify here that SIFTUP terminates and

the computation time required is proportional to the logarithm of the size N/10.

PASCAL

PROCEDURE SIFTUPde.N: INTEGER);
ENTRY (K.IL0G2(DIV(N,I9)))A(C0UNTER-3)A(KS8);

EXIT COUNTERSK+I;

VAR COPY:REALj J, I,INTEGER! .

BEGIN
I - 18! COPY ♦• nil)!

18: J - 2 * I;
ASSERT (COUNTER-IL0G2(DIV(I,I8)))A(COUNTERSK)A

{K=lL0G2(DIV(N,18)))A{J-2*I)i
C0UNTER^C0UNTER+1;
IF J S N THEN

BEGIN
IF J < N THEN

BEGIN
IF ttU+l] > Hü] THEN J ♦■ J+l
END;

IF MU] > COPY THEN
BEGIN mi] «- HU]; I - J; GO TO 18 END;

END;
nil] - COPY;

END;.;

FDR SIFTUP
THERE ARE 8 VERIFICATION CONDITIONS

tt 1
(K=IL0G2(DlV{N,I8)) &
CDUNTER-8 &
a<K

',CDUNTER-IL0G2(DIV(I8,I8)) &

22 -

j^i^^tti^i^^iAu^i&^ii^ _J

wm.mm? i ■ — mmmimnmk^m'wsmmvHm

COUNTERS &
K-ILOG2{O1V(N,I0)) &
2*18-2*18)

2
(C0PY<ri[j+i] &
n[j]<n[j+i] &
J<N &
J<N &
COUNTER-11002(017(1,10)) &
COUNTERS &
K-IL0G2(0IV(N.I3)) &
J-2*l

COUNTER+1-ILOG2(DIV(J+1,I0)) &
C0UNTER+1<K &
K=IL0G2(D1V(N.I8)) &
2*(J+1)-2*(J+1))

ti 3
(CüPY<n[j] &
-n[j]<ruj+i] &
J<N &
J<N &
C0UNTER-1L0G2(DIV(I,I8)) &
C0UNTER<K & .
K-1LOG2(OIV(N,I0)) &
J-2*I

C0UNTER+1=IL0G2(DIV(J,I8)) &
CÜUNTER+1<K &
K=ILÜG2(DIV(N,I8)) &
2*J-2*J)

4
(C0PY<n[j] &
-J<N &
J<N S
CÜUNTER=ILÜG2(DIV(I,I8)) &
C0UNTER<K &
K-1LOG2(O1V(N,I0)) &
J=2*I

COUNTER+1-ILOG2(D1V(J,I0)) &
CÜUNTER+1<K &
<=ILÜG2(DIV(N,I0)) &
2*J=2*J)

ft 5
(-€0PY<n[J+l] &
n[j]<n[j+i] &
J<N &
J^N &

- 23 -

«mm

ji^i-ii-;:, -'■.-' ...-:. ..^ :.>■ ■ ■.:... ..- . ■...■ .■:;-... . ■ ■ , . ■ ■■ -.. ^- :. ;,.:-^..-,.. '.

 piippwwiniii mn.IM ■■ ii jj>».M-ai<i i ...m.i.H.ijp<i ,p»flMWflWWWl»W^,»W*WW^wl'^*M"W

COUNTER-IL0G2(DIV(1,10)1 &
C0UNTER<K S
K=IL0G2(DIV{N.I8)) &
J-2*l

C0UNTER+1<K+1)

ft G
(^C0PY<n[J] &
-nu]<ruj+i: &
J<N &
J<N &
COUNTER-ILOG2(DIV{I,I0)) &
C0UNTER<K &
K=IL0G2(DIV(N.13)) &
J=2*I

COUNTER+UK+l)

7
(-coPY<n[j] &
-J<N &
J<N S
COUNTER"IL0G2(DIV(I,I8)) &
COUNTERS &
K=1LOG2(DIV(N.I0)) &
J=2*I

CÜUNTER+1<K+1)

8
{-J<N &
COUNTER-ILOG2(DIV(I,I0)) &
C0UNTER<K &
K=IL0G2{D1V(N.I8)) &
J-2*l

COUNTER+liK+1)

The time required to verify tnese verification conditions is 24 CPU seconds, using the

following lemmas.

GOALFILE
'AXIOn DIV(«X,«X) « Is

GOALFILE
AXIOM ILOGZd) - 0;

24

^^-^a^ii,:L...-aj^.faiai^,Mto^.i.^.!...,J «^.^va^a^M^aM

mj^mMMmmmm'vm^mu.JII.m*-* mmmßmmmmiiHmmimttmvj--- ^.^•fif^Aij.-,f^:l -'• iJÜWHHIUMJJW.

'

AXIOn IL0G2(DIV(2*9A,9B)) « 1L0G2(DIV(A,B)) + 1;
AXIOM 1L0G2(DIV(2*»A+1,«B)) « IL0G2(DIV(A,B)) + 1;
GOAL IL0G2(9X)+1 S IL0G2(9Y) SU3 2*X S Y;

In these examples here, and in many others, it turns out that termination (and indeed

accurate time bounds) are much easier to verify than the intended properties of the

output. If, as seems frequently to be the case, the halting of the program is

straightforward (and is not the "real" verification problem) this method of virtual

programming presents an ^asy and natural way to obtain a quick check of

termination and a verification of time estimates.

25

tbwadtMiffiiw&ttii^^ tuetM

iWfSPB«SHP™™WMi*'S" t.Mim'-UW.'*'? ■■!< w.il^uj.lHJPtlJ"

REFERENCES

[Clint & Hoare] Clint, M. and C A. R. Hoare,
Program Proviig : Jumps and Functions,
Acta Informatica, Vol. 1, pp.214-224, 1972.

[Clint] Clint, M.,
Program Proving: Coroutine,
Acta Informatica, Vol. 2, pp.50-63, 1973.

[Cook] Cook, S. A.,
Axiomatic and Interpretive Semantics for an Algol Fragment,
Technical Report 79, University of Toronto, 1975.

[Deutsch] Deutsch, L. P.,
An Interactive Program Verifier,
Ph.D. thesis. University of California, Berkeley, 1973.

[Dijkstra] Dijkstra, E.,
Guarded statements, CACNI, forthcoming.

[Farmwald] Farmwald, M.,
Private communications, A 1 Laboratory, Stanford University.

[Floyd] Floyd, Robert W.,
Assigning Meanings to Programs,
Proc. Symp. Appl. Math. Amer. Math. Soc, Vol 19,1967, pp.19-32.

[von Henke & Luckham] von Henke, F. W. and D. C. Luckham,
A Methodology for Verifying Programs,
Proceedings of International Conference of Reliable Software, IEEE,
pp.156-164,1975.

[Hoare69] Hoare, C. A. R.,
An Axiomatic Basis for Computer Programming,
CACM, Vol. 12,1969, Oct., pp.S76-580.

26

...v^ 1^.J^^.J....-..^..^ ■.■ ^.JL..^^„.... ,..^. .^.U,.^^.... -^^-.^.-^ ,.-^-.. ..^ ^

""■""" *mmm n*nf^R«M4i.ii|iiL.ti.ii. PwwwwgiwM!MWJWiii.WBim»iii.ii - ■

[Hoarell] Hoare, C. A. R.,
Procedures and Parameters: an axiomatic approach,
Symposium on Semantics of Algorithmic Languages,
E. Engelerled.), Springer-Verlag, 1971, pp.102-116.

FHoare & Lauer] Hoare, C. A. R. and P. E. Lauer,
Consistent and Complementary Formal Theories of the Semantics of ProSramming Languages,

Acta Informalica, Vol. 3, 1974, pp.135-153.

[Hoare & Wirth] Hoare, C. A. R. and N. Wirth,
An Axiomatic Definition of the Programming Language PASCAL.

Acta Informatica, Vol. 2, 1973, pp.335-355.

[IgarasLi, London & Luckham] Igarashi, S, R. L. London, and D. C. Luckham,
Automatic Program Verification I: Logical Basis and Its Implementation.
A1M-200, Stanford Artificial Intelligence Project, Stanford Un.versity, 197..

and Acta'Informatica, Vol.4, 1975, ^.145-182.

[King] Kiiv:, J. C.
A Program Verifier,
Ph.D. thesis, Carnegie-Mellon University, 1969.

[Knuth] Knuth, D. E.,
Fundamental, Algorithms,
The Art of Computer Programming, Vol.1, pp.17-19,

Addison-Wesley, Reading, 1973.

[Sites] Sites, Richard L,
Proving that Computer Programs Terminate Cleanly,
Computer Science Department Report CS 418,

Stanford University, May 1974.

[Suzuki a] Suzuki, Norihisa,
Verifying Programs by Algebraic and Logical Reduction.
Proceedings of Intl. Conf. on Reliable Software,
IEEE, 197S, pp.473-481.

[Suzuki b] Suzuki, Norihisa, , r. c .
Automatic Verification of Program with Complex Data Structure

27 -

ifiiifiifiitifiiiiiiiiir"-1"'-- ^.^-^. - ■ .. -.-. J

Ißnammimfr. \i,iß>si^u.Ljiw^Mtfi*i.m'w-mii\m,m[^ ,., ...-T.«^.«.^..™™..-^"

Ph.D. Thesis , Stanford University, 1975.

[Waldinger & Levitt] Waldinger, R. J. and K. N. Levitt,
Reasoning about Programs, . i .-. •«
Technical Note 86, SRI Project 224S, Stanford Research Instate.

<

i

5

1

- 28 -

»

»M^^.^^^a^^.aj^j^mM^i^^

Ill"» 11 ■4w«»--^!U.iiW!MUM-"VW-ll^IWW«PWi«4JiWi (Uipgilfijiiji. WjlHiiijn ,.

UNCLASSIFIED
■ ■ ■ ■ !

SECURITY CLASSIFICATION OP THIS PAGE (HJlmn Dml» Entmtsd)

STAN-CS-75-522, AIM269 D^b'
^

^-- £ ■ ; c ™ ~ , .x 2. GOVT ACCESSION NO

(tL.
//- 1 Automatic Program Verification"^: Proof of /

Termination Within a Weak Logic of Programs^/

../

REPORT DOCUMENTATION PAGE

7' AIIT^QP^l _

Luckham and D. C./] N./su zuki

READ INSTRUCTIONS
BEFORE Cr MPLETING FORM

3. RECIPIENT'S ' ATALOG NUMBER

ync »r nsnonT > nenioa.C0VE»ED

/^Technical 1*^1: T. , I -t- 6."pE«FOFiMl|y8'8mnrtF'«WTTrtlMBER
AIM269

B. CONTRACT OR GRANT NUMaERf»}

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Artificial Intelligence Laboratory
Stanford University
Stanford, California 9^0!?

I I. CONTROLLING OFFICE NAME AND ADDRESS

Col.Dave Russell, Dep. Dir., ARPA, IPT,
ARPA Headquarters, 1*4-00 Wilson Blvd.
Arlington. Virginia 23209

1«. MONITORING AGENCY NAME 4 ADDRESSf//d/«««!« /rom Conlrollln* OIHc»)

Philip Surra, CNR Representative
Durand Aeronautics Building Room 165 //£
Stanford University
Stanford, Calirornia 9I4.305

iir~DISTRIBU"ION STATEMENT (ol (All Rtpott)

Releasa^le without limitations on dissemination.

10. PROGRAM ELEMENT, PROJECT, TA
AREA > y«ORK UNIT NUMBERS

JARPA 0 "der^1^^_^^

»yjiEnnnr H^TB -—I

///.)(/ctgt?CTm^75 /
'^j.-mrefSfR OF P^R-

29
15. SECURITY CLASS, (oi thii rtport)

17. DISTRIBUTION STATEMENT (al th» Mbitrael tiftmd In Block 30, II dlltorml trom Rtpert)

13. SUPPLEMENTARY NOTES

19. KEY WORDS fConlinu» on fvram »Id» II nteiiimr? and Idmnilly by block numbtr)

20. ABSTRACT (■ConMm» on fvri» tldm 11 nmeommarf and Idmnttfy by block numb«)

A weak logic of programs la a formal s^sten In which statements that mean "the program
halts" cannot be expressed. In order to prove termination, we would usually have to
use a stronger logical system. In this paper we show how we can prove termination of
both Iterative and recursive programs within a weak logic by nc" ling pieces of code and
placing restrictions on loop Invariants and entry conditions. Thus, most of the
existing verifiers which are based on a weak logic of programs can be used to prove
termination of programs without any modification. ' We give examples of proofs of
termination and of accurate bounds on computation time that were obtained using the
Stanford Pascal program verifier.

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601 1 SICURITY CLASSIFICATION Of THIS PAGE fl»h.n D... Snf;.d)

UNCLASSIFIED

£ f ¥J£ c{
—«■'"■ " um wiiiiiiailllBg|WWIMHWWlMWWa«Wi«»M«ii»iiiiiM"ii«nii<iiiii' • ' ■ » i ■«^»•""■•»«••■■■»iignjm,,.

